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Abstract

This paper explores the shape of the Japanese money demand function

in relation to the historical path of the Bank of Japan’s policy rate by

employing Saikkonen and Choi’s (2004) cointegrating smooth transition

model. The nonlinear model provides a unified econometric framework,

not only for pursuing the time profile of interest elasticity, but also to test

the linearity of the Japanese money demand function. The test results for

the linearity of the Japanese money demand function provide evidence of

nonlinearity with a semi-log model and linearity with a double-log model.

Using a nonlinear semi-log model, the analysis also finds that Japanese

money demand comprises three regimes and that the interest semi-elasticity

began to increase in the early 1990s when the Bank of Japan set the policy

rate below 3%.

JEL Classification Numbers: C22; E41; E58

Keywords: money demand, low interest rate policy, nonlinear cointegration,

smooth transition model.
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1 Introduction

This paper empirically explores the shape of the Japanese M1 demand function

in relation to the historical path of the Bank of Japan’s (BOJ) policy rate using

the cointegrating smooth transition model in Saikkonen and Choi (2004).

From September 1995 onwards, the BOJ developed a unique low interest rate

policy (see Figure 1). While the BOJ initially guided overnight call rates below

0.5%, in February 1999 it implemented the so-called zero interest rate policy,

whereby the targeted overnight call rate was set at almost 0%. Accordingly,

the relative amount of money in circulation, as represented by M1 relative to

nominal GDP (the Marshallian k), rapidly increased towards 40% and higher

from the mid-1990s, even though it had been hitherto stable between 25% and

30%. In March 2001, the BOJ adopted a new policy framework by expanding

high-powered money. Although the quantity easing policy was lifted in March

2006, the targeted rate has since remained well below 0.5%.

The introduction of the low interest rate policy of the mid-1990s prompted

studies that focused on the shape of the Japanese money demand function from

the perspective of whether the Japanese economy had fallen into a liquidity

trap. Investigating the shape of the Japanese money demand function, given

the drastic increase in the Marshallian k under the small decrease in the call

rate since 1995, can be classified into the following aspects.

The first aspect is involved with the issue of whether Japanese money de-

mand became more interest elastic since the mid-1990s relative to other decades

4



(Miyao, 2004; Fujiki and Watanabe, 2004; Nakashima and Saito, 2006). Using

cointegrating structural break models constructed by Hansen (1992) and Kuo

(1998), these studies found that the absolute value of interest semi-elasticity

substantially increased in 1995, whereas that of the interest elasticity was stable

over time. 1 They confirmed that the estimates of interest elasticity ranged

from −0.11 to −0.15 for the full-sample periods under consideration and that

the estimates of interest semi-elasticity were −0.03 to −0.05 for sample periods

prior to 1995, whereas they were −0.4 to −0.6 for sample periods after 1995.

The second aspect is to investigate whether the Japanese money market has

a long-run equilibrium relationship. Previous studies, such as Miyao (2004) and

Fujiki and Watanabe (2004), have provided significant evidence of cointegration

in a double-log money demand model, but mixed evidence in a semi-log money

demand model. 2

The third aspect involves exploring a functional form to capture stable

Japanese money demand in terms of goodness-of-fit. Bae, Kakkar, and Ogaki

(2006) found that a double-log model outperformed a semi-log model in terms

of out-of-sample prediction performance. 3

The critical feature of previous studies on Japanese money demand is the

assumption of linearity for both the semi-log and double-log money demand

models. In the linear context, the test results for structural breaks show that

a double-log model can capture Japanese money demand over time without

considering the structural change of interest elasticity, whereas a semi-log model
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could not without considering the change of interest semi-elasticity in 1995.

Further, the cointegration and goodness-of-fit test results commend use of the

double-log model, not the semi-log model.

One objective of this paper is to reassess the performance of the semi-log and

double-log money demand models. In particular, we evaluate the estimation and

test results of previous work by considering the possibility of nonlinearity in both

models. Both the semi-log and double-log models have their own theoretical

backgrounds and policy implications. 4 Indeed, as pointed out by Lucas (2000),

each model could derive a different policy implication if the level of nominal

interest rates was drastically lower than rates thus far, similarly to the Japanese

economy of the mid-1990s. 5 Hence, judging the advantage of one model over

the other requires careful examination.

There is another motivation that is common with existing empirical studies

on Japanese money demand: we investigate the shape of the Japanese money

demand function. However, the approach adopted in this paper differs from

previous studies in that we consider the time-varying interest elasticity (or semi-

elasticity) as a function of the BOJ’s policy rate. To fulfill our objectives, we

employ the cointegrating smooth transition model in Saikkonen and Choi (2004).

Analyzing the history of interest elasticity (or semi-elasticity) in relation to

a policy rate requires a state-dependent cointegrating model, that is, a model in

which the coefficient parameter in question depends on the state of an explana-

tory variable. Saikkonen and Choi’s (2004) nonlinear cointegrating model, being
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accompanied by their cointegration test (Choi and Saikkonen, 2005) and linear-

ity test (Choi and Saikkonen, 2004), provides a unified econometric framework,

not only to estimate the time-varying interest rate elasticity, but also to evaluate

existing empirical studies on Japanese money demand under the extremely low

interest rate regime.

Careful examination of the shape of money demand requires a transition

value of a nominal interest rate, around which the interest elasticity is fluctu-

ating. Another advantage of Saikkonen and Choi’s (2004) model is that it can

identify the transition value. Other nonlinear cointegrating models (e.g., Park

and Phillips, 1999, 2001; Chang, Park, and Phillips, 2001; Bae and de Jong,

2007) and the cointegrating structural break models cannot identify this tran-

sition value. This paper attempts to uncover the shape of the Japanese money

demand function by identifying the historical path of interest elasticity and the

transition value of the BOJ’s policy rate.

In this paper, the nonlinearity of the smooth transition model concerns mod-

eling the long-run equilibrium of Japanese money demand, not the short-run er-

ror correction process to the equilibrium. Within a linear cointegration context,

the theory of nonlinear error correction models including smooth transition error

correction models has been developed by Saikkonen (2005, 2008) as an exten-

sion of Granger’s representation theorem, which provides a link between linear

cointegration and linear error correction models. 6 Within a nonlinear cointe-

gration context in which a long-run equilibrium relation is allowed to be state
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dependent, however, an extension of Granger’s representation theorem has not

been developed. Consequently, this paper focuses on characterizing the long-run

Japanese money demand by using the cointegrating smooth transition model in

Saikkonen and Choi (2004). 7

The paper is organized as follows. Section 2 introduces a cointegrating

smooth transition model for Japanese money demand and discusses the esti-

mation and test results. In this section, we reassess the performance of the

semi-log and double-log models in terms of goodness-of-fit. Section 3 considers

the shape of the Japanese money demand function based on estimates obtained

in Section 2. Finally, Section 4 summarizes our empirical findings and discusses

some issues for future research. The Appendix details the simulation methods

and results.

2 Estimation and Test

In this section, we introduce a nonlinear model of Japanese money demand

based on Saikkonen and Choi’s (2004) cointegrating smooth transition model.

In general, a smooth transition model, in identifying the transition value of an

explanatory variable, deals with the dependence of a coefficient parameter on

the state of the explanatory variable. 8

In particular, Saikkonen and Choi’s (2004) nonlinear cointegrating model has

an econometric framework to conduct tests for the null hypotheses of cointegra-

tion with nonlinearity and linearity. As discussed, previous studies of Japanese
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money demand, with few reservations, assumed linearity for both the semi-log

and double-log money demand models. However, if their assumption of linear-

ity were invalid, their test results for cointegration and goodness-of-fit would be

forced into a reexamination in a nonlinear context. Indeed, and according to

Figure 2, a double-log model appears to be linear, whereas a semi-log model

appears to be strongly nonlinear.

In this section, we undertake the following empirical steps. First, we find

a cointegrating relationship with possible nonlinearity for each of the semi-log

and double-log models. Next, we conduct the linearity test for the two models.

If we find nonlinearity, we reassess the performance of the two models in terms

of goodness-of-fit through modeling nonlinearity. Lastly, given the presence of

nonlinearity, we estimate a nonlinear money demand model.

2.1 Nonlinear Model of Money Demand

We assume that the Japanese money demand function can be described by the

following smooth transition model:

kt = constant + αit + βit

(
1 − 1

1 + exp (−γ(it − i∗))

)
+ εt, (1)

where kt indicates the logarithm of the Marshallian k, that is, the ratio of nominal

money stock to nominal GDP. Therefore, we adopt the velocity-based specifi-

cation for the Japanese money demand function. 9 In the semi-log model, it

merely indicates nominal interest as the opportunity cost of holding money, but

in the double-log model, it includes the logarithm of nominal interest. The lo-
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gistic function 1
1+exp (−γ(it−i∗)) makes the coefficient of it vary smoothly between

α and α + β. When the value of it sufficiently exceeds the transition value i∗,

the coefficient for it takes a value close to α. When the value of it decreases and

is far below the transition value, the coefficient for it changes and approaches

α + β. Furthermore, β = 0 reduces the nonlinear money demand model to a

conventional linear model.

We build the set of quarterly data as follows. As nominal monetary aggre-

gates we choose M1, compiled and seasonally adjusted by the BOJ, because M1

reflects to a greater extent the transaction demand for money and hence is fre-

quently employed in empirical studies of the Japanese money demand function.

Nominal GDP, as constructed by the Statistics Bureau, is used for nominal ag-

gregate output. The overnight call rate, as reported by the BOJ, is used not

only as the BOJ’s policy rate but also as the opportunity cost of holding money.

10 Given the historical path of the call rate, regarded as the BOJ’s policy rate,

we should carefully choose the sample periods for inclusion. One strategy is to

include sample periods prior to February 1999 when the BOJ began the zero

interest rate policy. The inaction of the call rate at their lower bound (0%) for

long-term periods (from 1999 to at least 2006) would cause serious econometric

problems with our nonstationary and cointegration analysis. Existing nonlinear

cointegration techniques including Choi and Saikkonen (2004) cannot deal with

the prolonged inaction of the short-term nominal interest rates above the zero

bound.
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Another strategy is to include sample periods prior to March 2001, when

the BOJ initiated the quantity easing policy. The departure from the policy

regime of interest rate targeting prohibits us from assuming that the call rate

reflects the BOJ’s policy decisions. 11 In addition, for the sample period prior

to August 2001, the short-term nominal interest rates stayed at low levels, but

barely moved above zero rates over time. For the following, we employ a strategy

of using sample periods up to the first quarters of 1999 and 2001; thereafter, we

check the robustness of the estimation and test results.

We conducted unit root tests for each of the variables: the log of the Mar-

shallian k, the level of the call rate, and the log of the call rate. We performed

augmented Dickey–Fuller (1979) and Phillips–Perron (1988) tests using data

from 1980 to 1999 or 2001. These test results confirm that each variable has a

unit root.

2.2 Nonlinear Estimation Method and Cointegration Test

In this section, we find the presence of a cointegrating relationship with possible

nonlinearity for the semi-log and double-log models using Choi and Saikkonen’s

(2005) test.

Choi and Saikkonen’s (2005) cointegration test is based on the following two-

step estimation procedure in Saikkonen and Choi (2004), which gives a consistent

and efficient estimator of the five parameters (constant, α, β, γ, i∗). For

simplicity, hereafter, we set θ = (constant, α, β, γ, i∗)′ and denote the logistic
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function 1
1+exp (−γ(it−i∗)) as g(it; τ), where τ = (γ, i∗)′.

The first step of the estimation involves obtaining a conventional nonlinear

least squares (NLLS) estimator θT with respect to θ. Although the NLLS esti-

mator is consistent, it is not efficient because of the regressor-error dependence.

12 Thereafter, to control the regressor-error dependence and thus obtain an ef-

ficient estimator, Saikkonen and Choi (2004) suggest considering the following

auxiliary regression model by adding the short-run dynamics of it:

kt = constant + αit + βit (1 − g(it; τ)) +
K∑

s=−K

πs∆it−s + µt.

Plugging in the NLLS estimator θT , the second step of the estimation involves

obtaining the following efficient estimator for θ and π = (π−K . . . πK)′:



θ1
T

π1
T


 =




θT

0


 +


 T−K∑

t=K+1

ztz
′
t




−1 
 T−K∑

t=K+1

z′tε̃t


 ,

where zt =
(

βT it
(
−∂g(it;τT )

∂τ

)′
, 1, it, it (1 − g(it; τT )) , ∆it−K , . . . ,∆it+K

)′
and

ε̃t indicate the fitted residuals in equation (1) using the NLLS estimates θT .

Saikkonen and Choi (2004) term the efficient estimator θ1
T as the “one-step

Gauss–Newton estimator.” They also propose plugging in the one-step Gauss–

Newton estimator instead of the NLLS estimator. They term the estimator

obtained in this manner the “two-step Gauss–Newton estimator.”

To test for cointegration in a nonlinear context, Choi and Saikkonen (2005)

propose a test for the null hypothesis of cointegration with possible nonlinearity

that uses Kwiatkowski, Phillips, Schmidt, and Shin’s (1992) (hereafter KPSS)
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test for the null of stationarity. They develop the cointegration test for the case

of the NLLS estimator θT and the one-step Gauss–Newton estimator θ1
T . Accord-

ing to Choi and Saikkonen (2005), the KPSS test using full-sample regression

residuals has limiting distributions that depend on unknown nuisance parameters

caused by the parameters of the models and regressor-error dependence. Accord-

ingly, they propose the use of subsamples of the regression residuals with block

size b and select the one that yields the maximum statistical values obtained

by applying the KPSS test to each of the subsamples. The subresidual-based

tests are not affected by the unidentified nuisance parameters. The selection

of the block size b can be done by using the minimum volatility rule proposed

by Romano and Wolf (2001). The rule comprises choosing b from b = bsmall to

b = bbig to minimize the standard deviations of 2m + 1 statistical values that

are calculated in the neighborhood of b, where m denotes an integer such that

m ≥ 1. 13 Choi and Saikkonen (2005) demonstrate that the calculated test

statistics asymptotically converge to
∫ 1
0 w2(r)dr, where w(r) denotes a standard

Brownian motion. 14

Table 1 reports the test statistics and p-values of Choi and Saikkonen’s test

using the minimum volatility rule together with the selected block sizes. CθT

and Cθ1
T

denote cointegration tests based on the NLLS estimation and the one-

step Gauss–Newton estimation with K = 1, 2, 4, respectively. To calculate the

test statistics, we set bmin = 10 and bbig = T − 4, and choose m = 2 as in Choi

and Saikkonen (2005). For the start points of the sample periods, we employ
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two cases, that is, sample periods from 1980/I and sample periods from 1985/I

to check the robustness of the tests. The null hypothesis is cointegration with

possible nonlinearity; we would be unable to reject cointegration for high p-

values. The null hypothesis cannot be rejected at 5% or lower in the various

periods, and consequently, we have strong evidence in favor of cointegration for

both the semi-log and double-log models in equation (1).

Our test results for cointegration with possible nonlinearity are noteworthy

because some empirical studies on Japanese M1 demand have pointed out the

possibility of no-cointegration with the semi-log model in the linear context of

β = 0 for equation (1). In contrast to previous work, our test results provide

strong evidence that not only the double-log model but also the semi-log model

has a cointegrating relationship with possible nonlinearity.

The small sample properties of the nonlinear cointegration test are reported

in the Appendix. As detailed, our test results are not subject to serious small

sample problems.

2.3 Linearity Test

As discussed earlier, previous research on the Japanese money demand function

assumed linearity for both the semi-log and double-log money demand models.

In this subsection, we evaluate the assumption of linearity.

We are interested in testing the null hypothesis that the money demand

function (1) reduces to a linear money demand function. Accordingly, the null
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hypothesis of interest is β = 0, while the alternative is β �= 0. However, con-

ventional hypothesis testing is difficult because the nuisance parameters γ and

i∗ are not identified under the null hypothesis. Hence, for the linearity test of

β = 0, we employ the first-order (T1) and the third-order (T2) tests suggested

by Choi and Saikkonen (2004).

To calculate the T1 test in the semi-log model of equation (1), the log of the

Marshallian k is regressed on the call rate, the lead and lags of the differenced

call rate, and the call rate to the second power using OLS techniques. For the

T2 test in the semi-log model, the call rate to the third power is additionally

used as a regressor in the specification used for the T1 test. As demonstrated by

Choi and Saikkonen (2004), the linearity tests of β = 0 in T1 and T2 reduce to

testing the significance of a parameter estimate for the second power of the call

rate and the significance of parameter estimates for the second and third powers

of the call rate, respectively. To calculate the two tests in the double-log model

of equation (1), the logarithm value of the call rate should be used. The limiting

null distributions of the T1 and the T2 test statistics are chi-square distributions

with one and two degrees of freedom, respectively.

Table 2 illustrates the results of the linearity tests in the semi-log and double-

log models. First, for the semi-log model, the null of linearity is rejected at a

significance level of 5% in all cases of leads-lags and sample periods. For the

double-log model, on the other hand, the null is not rejected in almost all cases.

The test results clearly indicate that the use of the semi-log model requires the
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consideration of nonlinearity to capture Japanese M1 demand over time, whereas

the double-log model does not.

Our test results for linearity establish the validity of assuming a linear spec-

ification, at least for the double-log model, but not for the semi-log model. 15

The Appendix reports the small sample properties of the T1 and T2 tests for

linearity. As demonstrated, the two tests are not subject to serious small sample

problems.

2.4 Performance Comparison

In this subsection, we conduct a performance comparison of the four models in

equation (1)—the linear semi-log model, the linear double-log model, the nonlin-

ear semi-log model, and the nonlinear double-log model—in terms of goodness-

of-fit.

Table 3 reports the sum of squared error (SSE) for the four models. The

linear semi-log and double-log models are estimated with the fully modified OLS

in Phillips and Hansen (1990). The SSE for the nonlinear semi-log and double-

log models are based on estimates obtained using the two-step Gauss–Newton

estimator with K = 1. The following results do not depend on the structure of

the leads and lags. The SSE is calculated using the in-sample and out-of-sample

prediction errors.

The linear semi-log and nonlinear double-log models are clearly inferior to

the other models in terms of both in-sample and out-of-sample prediction perfor-
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mance. In particular, the result for the linear semi-log model is compatible with

that of Bae, Kakkar, and Ogaki (2006) who have shown that the linear semi-

log model is inferior to the linear double-log model in terms of out-of-sample

prediction performance. On the other hand, the overall performance of the non-

linear semi-log model appears to exceed that of the linear double-log model. For

the in-sample prediction, the two models perform similarly. However, for the

out-of-sample prediction, the nonlinear semi-log model partly exceeds the lin-

ear double-log model. We employed other sample periods for the performance

comparisons, but the results did not qualitatively change.

Next, we conduct a comparative simulation study of the linear double-log

and nonlinear semi-log models based on the test results for goodness-of-fit. In

the simulation study, we examine how accurately the test results for goodness-

of-fit are replicated when one is adopted as the true model to simulate draws

and the other is used for the calculation of SSEs. If the empirical SSE presented

in Table 3 is consistent with the SSEs obtained by simulating draws for the true

model, we have a case for arguing that the true model is correct.

Table 4 reports the simulated mean square error (MSE) and bias (BIAS)

of the SSEs of the in-sample and out-of-sample predictions. The MSE and the

BIAS are defined as (e − e∗)2 and e − e∗, where e and e∗ indicate an empirical

SSE as presented in Table 3 and the mean of the SSEs obtained using Monte

Carlo simulation. When we adopt one as the true model, we simulate draws

from the true model and calculate a simulated SSE of the other for each draw.
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We conduct 1,000 Monte Carlo replications to obtain the mean of the simulated

SSEs: e∗. The Monte Carlo simulation procedure is described in the Appendix.

Overall, the MSE and the BIAS of the nonlinear semi-log model appear

to be smaller than those of the linear double-log model. The nonlinear semi-log

model captures samples used for their estimation more accurately than the linear

double-log model. For the in-sample prediction, the double-log model partly

exceeds the nonlinear semi-log model, however, for the out-of-sample prediction

the nonlinear semi-log model largely exceeds the double-log model for all of the

prediction periods.

In sum, and in contrast to those of Bae et al. (2006), our results indicate

that the linear double-log model does not always have the advantage over other

functional forms in terms of goodness-of-fit. 16

2.5 Estimation Results

Our results for goodness-of-fit indicate that the nonlinear semi-log model is as

effective as the linear double-log model. In addition, and unlike the linear double-

log model, the nonlinear semi-log model presents us with the opportunity to

estimate the time profile of interest semi-elasticity in relation to the call rate

as the BOJ’s policy rate, thereby allowing us to investigate the shape of the

Japanese M1 demand function in detail. In this subsection, we discuss the

estimation results of the nonlinear semi-log model obtained using the two Gauss–

Newton estimation methods. In the next section, we investigate the shape of
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the Japanese M1 demand function based on the estimation results.

Table 5 presents the estimation results for the two sample periods between

1985/I and 1999/I (hereafter period I) and between 1985/I to 2001/I (hereafter

period II). 17 The absolute values of the estimated interest semi-elasticities for

period I are smaller than those for period II. Indeed, for period I the estimates

of interest semi-elasticity for the linear part (α) are in the range of −0.04 to

−0.07, and for the nonlinear part (β) are approximately −0.2. For period II, the

estimates of interest semi-elasticity for the linear part are in the range of −0.08

to −0.09, and for the nonlinear part, −0.2 to −0.35. The estimation results for

the linear and nonlinear parts imply that the range of interest semi-elasticity

(α + β) is between −0.05 and −0.45. Estimated transition values (i∗) for the

two periods range from 2% to 3%. The above estimation results do not depend

on the structure of leads and lags.

Additional points of concern are as follows:

1. We estimate a nonlinear semi-log function without imposing unitary in-

come elasticity by regressing the real money balance of M1 on real GDP

and the call rate using Gauss–Newton methods. The results, being accom-

panied by estimated income elasticities close to one, are similar to those

illustrated in Table 5.

2. We also use the monthly data set: the industrial index of production as

a scale variable and the consumer price index as a price index. The re-

sults obtained by imposing unitary income elasticity are similar to those
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illustrated in Table 5. Furthermore, the estimation without imposing the

unitary income elasticity provides results like those illustrated in Table 5,

bringing the estimated income elasticities close to one.

We calculate a bootstrap confidence interval at 95%. As illustrated in Table

5, the estimation results do not change substantially, even though we explicitly

deal with small sample problems. The bootstrap procedure is described in the

Appendix.

3 The Shape of the Japanese Money Demand Func-

tion

In this section, we investigate the shape of the Japanese money demand function

using the nonlinear semi-log model.

Figure 3 illustrates the manner in which the interest semi-elasticity varies

depending on the level of nominal interest rate between 0% and 14% by using

semi-elasticity = αit +βit (1 − g(it; τ)). The calculation of the values of interest

semi-elasticity is based on the estimation results obtained by using the one-step

and two-step Gauss–Newton estimators with K = 1 for period II. The figure

shows that the interest semi-elasticity, taking a value of about −0.07, is quite

stable above a level of the estimated transition value (i∗), which is about 3%.

On the other hand, it is sharply increasing below the transition value and ends

up at a value of about −0.45.
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Next, we investigate the time profile of interest semi-elasticity using the

actual path of the call rate. Figure 4 illustrates the actual path of the call rate

and the path of the interest semi-elasticity. First, the interest semi-elasticity,

taking a value of about −0.07, had been quite stable until the early 1990s,

excluding the late 1980s, during which a low interest rate policy was temporarily

conducted. Second, as the call rate gradually lowered from a level of about

3%, interest semi-elasticity gradually increased from the early 1990s to the mid-

1990s. During the transition period, the interest semi-elasticity varies from −0.1

to −0.4. Third, in the period post-1995 when the BOJ guided the call rate below

0.5%, interest semi-elasticity took a larger value of about −0.45 and has been

quite stable.

The novelty of our finding is that we identify a transition period of interest

semi-elasticity from the early 1990s through to the mid-1990s. On the other

hand, for the period up until the early 1990s and for the period post-1995, our

estimates of interest semi-elasticity are compatible with existing empirical results

on the Japanese M1 demand function (Miyao, 2004; Fujiki and Watanabe, 2004;

Nakashima and Saito, 2006). Furthermore, compared with the existing empirical

results on US M1 demand, Japanese money demand is remarkably interest elastic

in the post-1995 period. 18

The above-mentioned results indicate that Japanese M1 demand is composed

of three regimes: Regimes I, II and III, as shown in Figure 5. In Regime I

through the early 1990s, the policy rate was set above 3% and the Japanese
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money demand function had lower interest semi-elasticity. Regime II from the

early 1990s to the mid-1990s is the transition period during which the interest

semi-elasticity gradually changed. In Regime III from the mid-1990s, the policy

rate was set below 0.5%, and the Japanese money demand function had higher

interest semi-elasticity.

4 Conclusion

We have three substantive conclusions pertaining to the shape of the Japanese

money demand function. First, the linearity test showed that there is statisti-

cally significant evidence of nonlinearity in the semi-log money demand model,

whereas there is no comparable evidence pertaining to the double-log money

demand model. This result indicates that if we examine a semi-log model for

an extremely low interest rate economy similar to that in post-1995 Japan, we

must specifically consider the nonlinearity of interest semi-elasticity. On the

other hand, if we examine a double-log model, we can assume a conventional

linear specification.

Second, we confirmed that a semi-log money demand model has a long-

run equilibrium relationship with a nonlinear form. In addition, we provided

evidence that a nonlinear semi-log model is as effective as a linear double-log

model in terms of goodness-of-fit. Therefore, as long as we specifically introduce

nonlinearity, we can capture stable Japanese money demand, even with a semi-

log model. This suggestion is especially noteworthy because previous studies
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such as Fujiki and Watanabe (2004) and Bae, Kakkar, and Ogaki (2006) showed

the possibility of no-cointegration with a semi-log model and the inferiority of a

semi-log model to a double-log model without considering nonlinearity.

Third, we found that Japanese money demand comprises three regimes: the

first, through to the early 1990s, was when the Japanese money demand func-

tion had lower interest semi-elasticity; the second, from the early 1990s to the

mid-1990s, was when interest semi-elasticity gradually increased; and the third,

after the mid-1990s, was when the Japanese money demand function had higher

interest semi-elasticity.

In particular, with regard to the relationship between interest elasticity and

the BOJ’s policy rate, our estimation results indicate that it was when the BOJ

set the policy rate below 3% in the early 1990s that interest semi-elasticity began

to increase. As discussed by Lucas (2000), an interest rate of approximately 3%

would arise in the US economy under a policy of zero inflation. The finding

in the Japanese economy that even prior to 1999, when the BOJ started the

zero interest rate policy and the liquidity trap phenomenon became self-evident,

interest elasticity had already begun to increase would be beneficial in the actual

implementation of monetary policy.

Two aspects remain yet unaddressed in our empirical investigation. First,

we do not consider the relationship between the two competing models in the

cointegration analysis, that is, between a nonlinear semi-log model and a linear

double-log model and between a linear structural change model and a nonlinear
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smooth transition model. In particular, it is not yet understood whether each of

the competing models is nested or reduces to a unified model, especially if the

path of the short-term interest rate is monotonically falling as in Japan during

the 1990s. 19 Second, we exclude the period after 1999 or 2001 from our sample

because the inaction of nominal interest rates at their lower bound (0%) for

long-term periods (from 1999 to at least 2006) would cause serious econometric

problems. As pointed out by Elliott (1998), small amounts of mean reversion

that cannot be consistently determined by unit root tests render standard coin-

tegration inference highly misleading. If we include the sample period after 1999

to explicitly consider the zero bound, we must deal with this statistical problem

using a more rigorous time series method. We would like to extend our research

along these lines in the future.

Appendix: Simulation Methods and Results

A 1. Size and Power of the Linearity Test

To calculate the empirical power of the first-order (T1) and the third-order (T2)

tests, we generate data using the following system:

kt = constant1T + α1
T it + β1

T it
(
1 − g(it; τ1

T )
)

+ εt (2)

it = it−1 + vt (3)

ωt =
s=p∑
s=1

Φsωt−s + ξt (4)

ξt ∼ i.i.d.N
(
ξ̄, σ2

)
, (5)
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where (constant1T , α1
T , β1

T ) and τ1
T = (γ1

T , i∗1T )′ indicate the parameter estimates

obtained by the one-step Gauss–Newton estimator with a full sample of size T .

ωt is defined by ωt = (εt, vt)
′. We calculate the empirical power through the

following steps:

1. Obtain the fitted residuals {εt : t = 1, . . . , T} in equation (2) using the esti-

mates θ1
T , and define {vt : t = 1, . . . , T } in equation (3) by first differencing

the observed value of the call rate, that is, vt = ∆it.

2. Suppose that the data generating process of
{
ωt = (εt, vt)

′ : t = 1, . . . , T
}

is given by the p-th order vector autoregression (VAR), as shown by equa-

tion (4), to capture the regressor-error dependence. In addition, estimate

the VAR by OLS to obtain the estimates {Φ1,Φ2, . . . ,Φp} and the fitted

VAR residuals {ξt : t = p + 1, . . . , T}. The order is chosen based on the

Schwarz information criterion.

3. Draw a sample {ξ∗t } of size T + p from the normal distribution (5) with a

mean ξ̄ = 1
T

∑T
t=1 ξt and a variance σ2 = 1

T

∑T
t=1

(
ξt − ξ̄

)2.

4. Generate a sample
{
ω∗

t = (ε∗t , v∗t )
′ : t = 1, . . . , T

}
recursively, using the es-

timated VAR, and obtain a sample {i∗t ; t = 1, . . . , T} of the call rate by in-

tegrating v∗t , that is, i∗t = i0 +
∑t

j=1 v∗j , where i0 indicates the initial value

of it. In addition, generate a sample {k∗
t : t = 1, . . . , T} of the Marshallian

k by substituting the residuals ε∗t as well as the explanatory variable i∗t into

the money demand function (2) estimated by the one-step Gauss–Newton
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estimator.

5. Apply the first-order and third-order tests for linearity based on the 5%

asymptotic critical values to each set of the sample (k∗
t , i∗t ), and repeat

this procedure 5,000 times.

Table A-1 reports rejection frequencies from Monte Carlo studies of the power

of the linearity tests. As shown in each panel of Table A-1, the calculated power

does not seriously deteriorate.

Next, we calculate the size of the linearity tests as follows. Assuming that

β1
T = 0 under the null of linearity, we obtain the fitted residuals by using the

estimates (constant1T , α1
T )′. Then, we follow the same procedure as in the cal-

culation of power. Table A-1 reports the rejection frequencies under the null

hypothesis as the size of the linearity tests. In the two sample periods, neither

shows substantial over rejection.

The Monte Carlo studies demonstrate that the test results based on our

sample do not suffer from serious small sample biases.

A 2. Size and Power of the Nonlinear Cointegration Test

To examine the small sample properties of Choi and Saikkonen’s (2005) Cθ1
T

test for cointegration, we alter the Monte Carlo procedure for the linearity test

as follows. First, we assume that a cointegrating error εt can be described as

follows:

εt = ρεt−1 + wt (6)
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wt ∼ i.i.d.N
(
w̄, σ2

w

)
. (7)

Furthermore, we assume ρ �= 0 under the null hypothesis and ρ = 0 under the

alternative hypothesis. On calculation of size, we estimate AR(1) process (6)

using the fitted residuals {εt}, obtained in step 1 of the Monte Carlo procedure

for the linearity test, whereas in the calculation of power, we first consider the

difference of the fitted residuals. Then, we obtain a sample of {wt : t = 1, . . . , T}.

Second, we assume that the sample {wt} follows an i.i.d. normal distribution

(7) with a mean w̄ = 1
T

∑T
t=1 wt and a variance σ2

w = 1
T

∑T
t=1 (wt − w̄)2, and

generate a sample {w∗
t } of size T + 1 from the normal distribution. Third,

we obtain a sample {ε∗t ; t = 1, . . . , T} by integrating w∗
t . Except for using the

generated cointegrating errors {ε∗t}, we follow the same procedure as for the

linearity test in calculating both size and power.

Table A-2 reports the calculated size and power of the Cθ1
T

test. Overall, the

Cθ1
T

test shows good small sample performance. For the size, the test reveals no

serious size distortion. The empirical power is also reasonably high.

A 3. Comparative Simulation Study of the Two Models

To conduct a comparative simulation study of the linear double-log and nonlinear

semi-log models, we alter the Monte Carlo procedure for the linearity test as

follows. First, when we adopt the linear double-log model as the true model, it

indicates a logarithmic value of the overnight call rate in the system given by (2)–

(5). We impose β1
T = 0 in equation (2) and estimate (constant1T , α1

T ) using the
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fully modified OLS in Phillips and Hansen (1990). Second, when we adopt the

nonlinear semi-log model as the true model, we estimate (constant1T , α1
T , β1

T )

and τ1
T = (γ1

T , i∗1T )′ using the two-step Gauss–Newton estimator with K = 1

and not using the one-step Gauss–Newton estimator. Third, to prepare for the

out-of-sample prediction experiments for the periods up to 2001/I, and up to

2002/IV, we estimate the parameters of the true model using the sample from

1985/I to 2001/I, and from 1985/I to 2002/IV, respectively. Fourth, in step 5,

we use the sample (k∗
t , i∗t ) obtained by simulating a draw for the true model,

thereby calculating a simulated sum of squared error for the other. We repeat

this procedure 1,000 times to obtain the mean of simulated sums of squared

error: e∗. We calculate the mean square error (MSE) and bias (BIAS) defined

as (e − e∗)2 and e − e∗, where e indicates an empirical sum of squared error

presented by Table 3.

According to Table 4, the MSE and the BIAS of the nonlinear semi-log model

are smaller than those of the linear double-log model. For the in-sample predic-

tion, the double-log model partly exceeds the nonlinear semi-log model, while

for the out-of-sample prediction, the nonlinear semi-log model largely exceeds

the double-log model in all of the prediction periods.

A 4. Bootstrap Confidence Interval

To obtain bootstrap confidence intervals, we alter the Monte Carlo procedure

for the linearity test as follows. First, in step 1, we use the parameter estimates
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obtained by the one-step and two-step Gauss–Newton estimators with K =

1, 2, 4. Second, in step 3, we sample ξ∗t of size T randomly with replacement

from the centered VAR residuals
{
ξt − ξ̄ : t = 1, . . . , T

}
, where ξ̄ = 1

T

∑T
t=1 ξt.

Third, in step 5, we calculate the confidence interval based on the one-step and

the two-step Gauss–Newton estimators by using the bootstrap sample obtained

in step 4. Except for these steps, we follow the same procedure as the linearity

tests in calculating power.

According to Table 5, while the estimated confidence intervals are somewhat

larger than those based on asymptotic distribution, the sign and significance of

the estimated parameters do not change substantially.

Footnotes

1 As an exception, Hondroyiannis, Swamy, and Tavlas (2000) employed a random

coefficient model and found that the absolute value of the interest elasticity esti-

mate continuously decreased, even in the lower interest rate period. Their finding

should, however, be reserved because it is not clear that the random coefficient

model can be applied when dealing with the coefficients of integrated variables.

2 Miyao (2004) and Fujiki and Watanabe (2004) have shown that Gregory and

Hansen’s (1996) cointegration test, which allows for a possible structural break

in a linear context, detected cointegration with a double-log model but not with a

semi-log model. In contrast, Miyao (2004) showed that the Johansen (1988) and

Johansen and Juselius (1990) cointegration tests detected cointegration with both

models.

3 In addition to conventional linear cointegration techniques, such as fully modified
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ordinary least squares (OLS) or dynamic OLS, Bae et al. (2006) used the non-

linear cointegration technique in Bae and de Jong (2007) to estimate a double-log

money demand function, thereby dealing with the statistical issue of the nonlinear

transformation of interest rates as the I(1) variable. Their finding for out-of-sample

prediction performance did not depend on the techniques used for their estimation.

4 Cagan (1956) devised a semi-log money demand model to analyze hyperinflation.

Nakashima and Saito (2006) developed a semi-log money demand model based

on the classical Cagan model to examine deflation in Japan in the late 1990s.

Lagos and Wright (2005) derived a semi-log model employing a search-theoretical

approach. Conversely, the double-log money demand model mainly derives its

theoretical background from new classical representative agent models, including

the shopping-time model (see McCallum and Goodfriend (1989), and Lucas (1988,

2000)).

5 Lucas (2000) demonstrated that the estimated welfare cost of inflation varies de-

pending on which of the two models is used. Miyao (2004) reviews recent devel-

opments in liquidity trap theories.

6 Applications of the smooth transition model for modeling the money demand equa-

tion include Wolters, Teräsvirta, and Lütkepohl (1998), Lütkepohl, Teräsvirta, and

Wolters (1999), Sarno (1999), Huang, Lin, and Cheng (2001), and Teräsvirta and

Eliasson (2001). Unlike the present paper, these studies all assume a linear long-run

relation between money and other variables that is based on economic theories for

money demand, thus using a smooth transition error correction model to capture

nonlinear dynamics of a short-run correction process to a long-run equilibrium.

7 Christopoulos and León-Ledesma (2007) have applied Saikkonen and Choi’s (2004)

cointegrating smooth transition model to modeling the long-run Fisher equation.
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They do not model the short-run error correction dynamics to the long-run equi-

librium.

8 In contrast, a structural break model is a simple time-dependent parameter model.

Hence, the structural break model is not appropriate for estimating the time pro-

file of a parameter coefficient in relation to an explanatory variable of concern.

Furthermore, the structural break model cannot identify the transition value, even

though the model can identify the change point at which the set of coefficient

parameters change.

9 Fujiki and Watanabe (2004) provide evidence that the estimates of income elastic-

ity lie close to unity. Nakashima and Saito (2006) found that the income elasticity

for Japanese money demand was stable over time with the partial structural change

test of Kuo (1998). Miyao (2004) and Bae, Kakkar, and Ogaki (2006) adopted the

velocity-based specification for modeling the Japanese money demand function.

We follow these studies to form a base specification for the Japanese money de-

mand function.

10 There is a long controversy over which short- or long-term rate should be included

in the empirical specification of the money demand equations as the opportunity

cost of holding money (e.g., Poole, 1988; Hoffman and Rasche, 1991). Hoffman,

Rasche, and Tieslau (1995), however, argued that if two interest rates are cointe-

grated from the term structure, the interest rate used is irrelevant to the estimates

of interest elasticity. Indeed, they employed the overnight call rate as the most

representative short-term rate in Japan. Accordingly, we employ the call rate not

only as the BOJ’s policy indicator, but also as the opportunity cost of holding

money.

11 Nakashima (2006) showed that the call rate represented the BOJ’s policy decisions
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up to February 2001 and that an equally weighted average of the call rate and

reserves represented the BOJ’s policy decisions from March 2001.

12 The NLLS estimator θT is consistently of the order Op(T− 1
2 ), which differs from

Op(T−1) obtained in the linear cointegrating cases.

13 More specifically, the algorithm of the minimum volatility rule is as follows. First,

for each b = bsmall to b = bbig, we compute a statistical value C(b). Next, for

each b, we calculate the standard deviation of C(b − m), . . . , C(b + m), where m

denotes an integer of m ≥ 1. Lastly, we pick the value b∗ with the smallest standard

deviation and report C(b∗) as the final statistical value.

14 Choi and Saikkonen (2005) give the cumulative distribution function of
∫ 1

0 w2(r)dr

as

F (z) =
√

2
∞∑

n=0

Γ(n + 1/2)
n!Γ(1/2)

(−1)n

(
1 − f

(
u

2
√

z

))
, z ≥ 0,

where f(x) = 2√
π

∫ x

0 exp(−β)dβ and u =
√

2
2 +2n

√
2. z indicates test statistics for

the cointegration test. Choi and Saikkonen (2005) suggest truncating the series at

n = 10.

15 We also conducted the linearity test for income elasticity without imposing unitary

income elasticity. We have strong evidence pertaining to the linearity of income

elasticity.

16 For the performance comparison of out-of-sample prediction, Bae et al. (2006)

also used a nonlinear model implied by the money in the utility function with

the constant elasticity of substitution. They showed that the nonlinear model

displayed similar performance to the double-log model.

17 The estimation results for the sample periods from 1980/I are similar to those for

sample period I.
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18 Stock and Watson (1993) applied several estimation methods to the sample period

1946–1987 and found that the estimated interest semi-elasticity ranged from −0.02

to −0.09. By extending the postwar US data through to 1996, Ball (2001) demon-

strated that the interest semi-elasticity was approximately −0.05. From existing

empirical work on US M1 demand, we cannot find any point estimates of interest

semi-elasticity around −0.4 or −0.5.

19 Bae and de Jong (2007) developed a nonlinear cointegration technique to estimate

a double-log model, thereby rigorously modeling the nonlinearity of interest semi-

elasticity using the double-log model. Carrasco (2002) studied the relationships

between a structural change model, a threshold model, and a Markov-switching

model. Her study, however, only concerns the modeling of stationary variables.
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Table 1: Test Results for Cointegration with Possible Nonlinearity

Double-log Model

Period
Cθ1

T
CθT

K = 1 K = 2 K = 4

1980/I–2001/I
P-value 0.638 0.654 0.706 0.654

(0.440) (0.464) (0.553) (0.465)
Block Size 24 23 24 46

1985/I–2001/I
P-value 0.598 0.772 0.801 0.764

(0.387) (0.705) (0.794) (0.685)
Block Size 35 48 21 16

1980/I–1999/I
P-value 0.874 0.688 0.765 0.601

(1.586) (0.520) (0.687) (0.390)
Block Size 59 36 59 38

1985/I–1999/I
P-value 0.628 0.822 0.801 0.103

(0.426) (0.879) (0.797) (0.092)
Block Size 16 37 35 39

Semi-log Model

Period
Cθ1

T
CθT

K = 1 K = 2 K = 4

1980/I–2001/I
P-value 0.741 0.765 0.701 0.410

(0.628) (0.686) (0.544) (0.214)
Block Size 51 51 49 77

1985/I–2001/I
P-value 0.727 0.758 0.667 0.224

(0.596) (0.667) (0.484) (0.128)
Block Size 29 52 27 52

1980/I–1999/I
P-value 0.603 0.588 0.665 0.643

(0.392) (0.374) (0.482) (0.447)
Block Size 65 30 45 49

1985/I–1999/I
P-value 0.541 0.641 0.725 0.185

(0.321) (0.445) (0.593) (0.128)
Block Size 46 41 11 47

1. CθT
and Cθ1

T
denote the cointegration tests based on the NLLS estimation and the one-step

Gauss–Newton estimation, respectively.

2. K denotes the number of leads and lags in the regression model.

3. P-values are calculated using the cumulative distribution function in Choi and Saikkonen (2005).

4. Test statistics are reported in parentheses.

5. Block sizes are calculated using the minimum variance rule with m = 2.

6. The long-run variance is estimated using Andrews’ (1991) method with an AR(4) approximation
for the prefilter.
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Table 2: Linearity Tests for the Japanese Money Demand Function

Specification Period
T1 T2

K = 1 K = 2 K = 4 K = 1 K = 2 K = 4

Double-log

1980/I–2001/I 0.398 0.195 0.613 6.424** 2.850 2.282

1985/I–2001/I 4.377** 0.335 1.110 8.255** 1.896 1.683

1980/I–1999/I 3.646 3.065 1.668 3.646 3.103 1.746

1985/I–1999/I 2.149 1.908 1.255 2.539 3.373 5.953

Semi-log

1980/I–2001/I 16.95** 12.21** 51.63** 22.68** 14.73** 61.62**

1985/I–2001/I 5.024** 6.568** 4.43** 6.712** 9.637** 7.412**

1980/I–1999/I 57.75** 9.235** 23.64** 74.86** 10.49** 25.81**

1985/I–1999/I 14.56** 4.727** 4.999** 17.42** 6.126** 7.672**

1. K denotes the number of leads and lags in the regression model.

2. * and ** indicate the significance levels of 5% and 10%, respectively.

3. T1 and T2 have the asymptotic distributions with degrees of freedom one and two, respectively.

4. The long-run variance is estimated using Andrews’ (1991) method with an AR(4) approximation
for the prefilter.
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Table 3: Test Results for Goodness-of-fit

Model
In-sample Prediction Out-of-sample Prediction

1985/I-1999/I 1985/I-2001/I 1980/I-2001/I 1998/II-2001/I 1999/II-2001/I 1999/II-2002/IV

Linear Semi-log 0.381 1.029 2.987 0.867 0.475 1.225

Linear Double-log 0.081 0.367 0.431 0.345 0.403 0.611

Nonlinear Semi-log 0.094 0.230 0.356 0.449 0.025 0.295

Nonlinear Double-log 0.373 7.620 7.854 16.85 1.827 3.886

1. The table reports the sum of squares error (SSE) of the in-sample and out-of-sample prediction.

2. The SSEs of the out-of-sample prediction for the periods from 1998/II, and from 1999/II are based
on estimates using the sample from 1985/I to 1998/I, and from 1985/I to 1999/I, respectively.

3. We calculate the SSEs for the linear semi-log and double-log models by performing the fully
modified OLS estimation in Phillips and Hansen (1990).

4. We calculate the SSE for the nonlinear semi-log and double-log models through performing the
two-step Gauss–Newton estimation with K = 1.

40



Table 4: Comparative Simulation Study of the Linear Double-log and
Nonlinear Semi-log Models

In-sample Prediction

True Model
Prediction Period

1985/I-1999/I 1985/I-2001/I 1980/I-2001/I

Linear Double-log
MSE 1.138 0.317 0.913

BIAS -1.177 -0.563 -0.956

Nonlinear Semi-log
MSE 0.301 0.414 1.928

BIAS -0.548 -0.643 -1.388

Out-of-sample Prediction

True Model
Prediction Period

1998/II-2001/I 1999/II-2001/I 1999/II-2002/IV

Linear Double-log
MSE 0.881 0.783 10.86

BIAS -0.939 -0.884 -3.295

Nonlinear Semi-log
MSE 0.006 0.012 0.005

BIAS -0.079 0.110 0.068

1. The table reports the simulated mean square error (MSE) and bias (BIAS) of the SSEs presented
in Table 3. The MSE and the BIAS are defined as (e− e∗)2 and e− e∗, where e and e∗ indicate
an empirical SSE presented in Table 3 and the mean of the SSEs obtained using Monte Carlo
simulation.

2. When the linear double-log model (the nonlinear semi-log model) is adopted as the true model,
the MSE and the BIAS are obtained by simulating draws from the true model and estimating a
SSE of the nonlinear semi-log model (the linear double-log model) for each draw.

3. The MSE and the BIAS are obtained with 1,000 Monte Carlo replications.

4. The procedure for the Monte Carlo simulation is described in the Appendix.
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Table 5: Parameter Estimates of Nonlinear Money Demand Model

Period I (1985/I–1999/I)

Estimation K C.I. α β γ i∗

One-step

1
-0.049 -0.219 0.756 3.246

Asy (-0.070, -0.027) (-0.362, -0.076) (0.369, 1.144) (1.050, 5.442)
Boot (-0.055, -0.040) (-0.319, -0.185) (0.667, 0.822) (2.778, 3.628)

2
-0.048 -0.213 0.752 3.253

Asy (-0.075, -0.021) (-0.381, -0.044) (0.329, 1.176) (0.750, 5.757)
Boot (-0.055, -0.037) (-0.329, -0.175) (0.659, 0.823) (2.732, 3.673)

4
-0.043 -0.217 0.743 3.136

Asy (-0.080, -0.007) (-0.437, 0.004) (0.240, 1.247) (0.106, 6.166)
Boot (-0.053, -0.029) (-0.361, -0.168) (0.638, 0.829) (2.526, 3.641)

Two-step

1
-0.069 -0.204 0.872 3.144

Asy (-0.152, 0.014) (-0.719, 0.312) (-0.213, 1.957) (-0.593, 6.880)
Boot (-0.105, -0.027) (-0.601, -0.055) (0.583, 1.137) (2.201, 4.044)

2
-0.070 -0.198 0.879 3.144

Asy (-0.156, 0.015) (-0.719, 0.323) (-0.234, 1.992) (-0.750, 7.039)
Boot (-0.106, -0.028) (-0.596, -0.034) (0.565, 1.144) (2.076, 4.037)

4
-0.068 -0.202 0.887 2.989

Asy (-0.171, 0.353) (-0.835, 0.432) (-0.502, 2.276) (-1.769, 7.747)
Boot (-0.117, -0.017) (-0.661, -0.007) (0.500, 1.242) (1.713, 4.170)

Period II (1985/I–2001/I)

Estimation K C.I. α β γ i∗

One-step

1
-0.081 -0.342 1.142 1.868

Asy (-0.099, -0.063) (-0.520, -0.164) (0.298, 1.985) (0.242, 3.493)
Boot (-0.091, -0.069) (-0.449, -0.225) (0.873, 1.338) (1.358, 2.333)

2
-0.083 -0.303 1.049 2.109

Asy (-0.103, -0.063) (-0.501, -0.105) (0.152, 1.945) (0.338, 3.880)
Boot (-0.098, -0.078) (-0.468, -0.261) (0.886, 1.368) (1.796, 2.716)

4
-0.087 -0.206 0.754 2.727

Asy (-0.115, -0.059) (-0.496, 0.085) (-0.362, 1.869) (0.396, 5.059)
Boot (-0.103, -0.082) (-0.339, -0.176) (0.602, 1.078) (2.435, 3.400)

Two-step

1
-0.087 -0.397 1.458 1.566

Asy (-0.139, -0.035) (-0.957, 0.163) (-0.644, 3.560) (-1.132, 4.265)
Boot (-0.132, -0.074) (-0.901, -0.223) (0.838, 2.142) (0.791, 2.422)

2
-0.089 -0.305 1.242 1.995

Asy (-0.131, -0.047) (-0.688, 0.077) (-0.012, 2.495) (-0.052, 4.041)
Boot (-0.117, -0.075) (-0.596, -0.204) (0.917, 1.605) (1.499, 2.574)

4
-0.086 -0.118 0.743 3.383

Asy (-0.165, -0.007) (-0.658, 0.422) (-0.585, 2.071) (-0.861, 7.627)
Boot (-0.117, -0.072) (-0.403, -0.057) (0.543, 0.943) (2.780, 3.996)

1. One-step and Two-step denote the one-step and two-step Gauss–Newton estimations, respec-
tively.

2. K denotes the number of leads and lags in the regression model.

3. The number in parentheses denotes the 95% confidence interval. To calculate the 95% confidence
interval, we use the long-run variance estimated through Andrews’ (1991) method with an AR(4)
approximation for the prefilter.

4. Asy and Boot denote the asymptotic and bootstrap confidence intervals, respectively.
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Table A-1: Empirical Size and Power of Linearity Tests

Period I (1985/I–1999/I)

Specification
T1 T2

K = 1 K = 2 K = 4 K = 1 K = 2 K = 4

Double-log
Size 0.100 0.120 0.156 0.082 0.092 0.130

Power 0.781 0.832 0.997 0.744 0.803 0.927

Semi-log
Size 0.091 0.094 0.125 0.059 0.063 0.079

Power 0.754 0.750 0.760 0.732 0.717 0.744

Period II (1985/I–2001/I)

Specification
T1 T2

K = 1 K = 2 K = 4 K = 1 K = 2 K = 4

Double-log
Size 0.103 0.154 0.230 0.087 0.122 0.293

Power 0.547 0.698 0.851 0.464 0.583 0.868

Semi-log
Size 0.134 0.149 0.215 0.089 0.106 0.169

Power 0.864 0.869 0.846 0.851 0.868 0.847

1. Data are generated as discussed in the Appendix.

2. K denotes the number of leads and lags in the regression model.

3. Empirical size is calculated under the null of linearity (β = 0), and empirical power is calculated
under the alternative of nonlinearity (β �= 0).

4. The number of iterations is 5,000 and the nominal size is 5%.

5. The long-run variance is estimated using Andrews’ (1991) method with an AR(4) approximation
for the prefilter.
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Table A-2: Empirical Size and Power of the Nonlinear Cointegration Test

Period I (1985/I–1999/I)

Specification
θ1

T

K = 1 K = 2 K = 4

Double-log
Size 0.055 0.061 0.054

Power 0.437 0.406 0.401

Semi-log
Size 0.056 0.060 0.050

Power 0.439 0.417 0.404

Period II (1985/I–2001/I)

Specification
θ1

T

K = 1 K = 2 K = 4

Double-log
Size 0.058 0.048 0.035

Power 0.591 0.539 0.530

Semi-log
Size 0.059 0.041 0.036

Power 0.572 0.555 0.541

1. Data are generated as discussed in the Appendix.

2. K denotes the number of leads and lags in the regression model.

3. Empirical size is calculated under the null of cointegration and empirical power is calculated
under the alternative of no-cointegration.

4. The number of iterations is 5,000 and the nominal size is 5%.

5. The long-run variance is estimated using Andrews’ (1991) method with an AR(4) approximation
for the prefilter.
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Figure 1. Overnight Call Rates and Marshallian k
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Figure 2: Semi-log Model and Double-log Model (1985/I-2001/I)
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Figure 3. Level of Nominal Interest Rates
and Interest Semi-elasticity
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Figure 4. Time Profile of Interest Semi-elasticity
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Figure 5. The Shape of the Japanese Money Demand Function
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